47 research outputs found

    Detection of Immunoglobulin G against E7 of Human Papillomavirus in Non-Small-Cell Lung Cancer

    Get PDF
    Background. A significant number of non-small-cell lung cancers (NSCLC) have human papillomavirus (HPV) DNA integrated in their genome. This study sought to further establish HPV’s possible etiologic link to NSCLC by evaluating an immune response to HPV’s oncogene, E7, in patients with NSCLC. Patients and Methods. Antibodies (IgG) in serum against E7 for HPV 16 and 18 in 100 patients with NSCLC were examined by enzyme-linked immunosorbent assay (ELISA). Results. Sixteen NSCLC patients were found to have a high titration of IgG for HPV oncogenic E7 protein. 23.5% of adenocarcinomas (AC,) and 15.4% of squamous cell carcinomas (SCC) were positive for IgG against HPV E7. HPV-18 (11%) had a slightly higher frequency than HPV-16 (6%). Of the six positive cases for HPV-16, 3 were AC, 2 SCC, and 1 NOS (not otherwise specified). For the 11 HPV-18 positives, 7 were AC, and 4 SCC. The one case with IgG against HPV 16 and 18 was AC. One case had high cross-reactive levels against E7 of HPV 16 and 18. Two (28%) of 7 patients who reported never smoking were positive for HPV, and 12 (13.6%) of 88 smokers were HPV positive. Conclusions. The study detected high levels of IgG against E7 in 16% of NSCLC patients. This adds evidence to a potential role of HPV in the pathogenesis of NSCLC

    Prevalence of Antibodies Against Virus-Like Particles of Epidermodysplasia Verruciformis-Associated HPV8 in Patients at Risk of Skin Cancer

    Get PDF
    There is increasing evidence for widespread occurrences of infection with Epidermodysplasia verruciformis-related human papillomaviruses, both in the general population and in immunosuppressed patients. In order to test for the prevalence of antibodies directed against the native L1 epitopes exposed on the surface of the virions, we have established an IgG-specific enzyme-linked immunosorbent assay with L1 virus-like particles of the Epidermodysplasia verruciformis-specific human papillomavirus 8 as antigen to screen 567 representative serum samples from the general population and immunosuppressed/dermatologic patients. Among healthy European donors (n = 210), 7.6% were found to be seropositive. In a group of renal transplant recipients (n = 185) the antibody prevalence was elevated to 21.1%, irrespective of the presence or absence of skin cancer. High positivity rates could be detected among (i) immunocompetent patients with nonmelanoma skin tumors (45.6%, n = 79) and (ii) Psoralene/UVA treated psoriasis patients (42.9%, n = 42). In contrast, anti-human papillomavirus 8-virus-like particle antibodies were found in only 6.8% of Hodgkin lymphoma patients (n = 44)

    Ancient papillomavirus-host co-speciation in Felidae

    Get PDF
    The evolutionary rate of feline papillomaviruses is inferred from the phylogenetic analysis of their hosts, providing evidence for long-term virus-host co-speciatio

    An inquiry into the causes and effects of the variolae (or Cow-pox. 1798).

    No full text
    Few papers have had a greater impact on the health of the human species than the simple, yet elegant, observations and clinical trials of Edward Jenner with what was at the time called the Cow Pox. In fact, this was a naturally attenuated rodent (probably rat) pox that could infect horses and, through farriers and farm hands, dairy cattle. While commonly called the Cow Pox at the time, Jenner\u27s transmission studies between humans used infectious materials from horses. His methods provided protection from the serious effects of smallpox infections. In 1977, smallpox was considered to be eradicated, although people continue to be infected by pox viruses from other mammalian species. We consider this to be our \u27favorite historical paper\u27 because it emphasizes careful clinical observation followed by relatively simple clinical testing can have a profound influence on human health, even when almost nothing is known about the underlying molecular mechanisms. Continued follow-up with strict attention to detail resulted in a crude but effective way to deal with an epidemic, methods still used today for containing infectious diseases. Exp Dermatol 2016 Mar; 25(3):178-80

    Searching for the initiating site of the major capsid protein to generate virus-like particles for a novel laboratory mouse papillomavirus.

    No full text
    Correctly folded virus-like particles (VLPs) of papillomavirus (PV) display conformationally dependent epitopes that are type specific, maintained on authentic virions, and induce neutralizing antibodies. Alignment of the L1 amino acid (aa) sequences of 84 PVs revealed that the lengths of their N-termini are diverse and that multiple, possible initiation methionine (met) codons exist. The L1 gene of MusPV (MmuPV1), that naturally infects immunodeficient laboratory mouse strain (NMRI-Foxn1(nu)/Foxn1(nu)), has four met codons at the 1st, 2nd, 28th, and 30th aas from its N-terminus. Of these, the 3rd and 4th mets, that are at the 28th and 30th aa position from the N-termius, respectively, are located at the position where most PVs have their first met. These two mets, located at the 9th and 11th from the YLPP conserved aas of most PVs, should be considered as consensus initiation codons of PV L1s. Three L1 proteins of MusPV, starting from the 2nd, 3rd, and 4th mets, were expressed using a baculovirus expression system and characterized for their ability to self-assemble into VLPs. While MusPV L1 proteins starting from the 2nd met expressed an L1 protein that did not fold into VLPs, the L1s starting from the 3rd and 4th mets generated correct VLPs in abundant quantities. We now conclude that the highest quantity and best quality VLPs are made from the consensus L1 met of MusPV. Exp Mol Pathol 2014 Jan 2; 96(2):155-161

    Characterization of a Novel Close-to-Root Papillomavirus from a Florida Manatee by Using Multiply Primed Rolling-Circle Amplification: Trichechus manatus latirostris Papillomavirus Type 1

    No full text
    By using an isothermal multiply primed rolling-circle amplification protocol, the complete genomic DNA of a novel papillomavirus was amplified from a skin lesion biopsy of a Florida manatee (Trichechus manatus latirostris), one of the most endangered marine mammals in United States coastal waters. The nucleotide sequence, genome organization, and phylogenetic position of the Trichechus manatus latirostris papillomavirus type 1 (TmPV-1) were determined. TmPV-1 is the first virus isolated from the order of Sirenia. A phylogenetic analysis shows that TmPV-1 is only distantly related to other papillomavirus sequences, and it appears in our phylogenetic tree as a novel close-to-root papillomavirus genus

    Epidemiological and phylogenetic analysis of institutional mouse parvoviruses.

    No full text
    Mouse parvoviruses (MPVs) are small, single-stranded, 5 kb DNA viruses that are subclinical and endemic in many laboratory mouse colonies. MPVs cause more distinctive deleterious effects in immune-compromised or genetically-engineered mice than immuno-competent mice. At the University of Louisville (U of L), there was an unexpected increase of MPV sero-positivity for MPV infections in mouse colonies between January 2006 and February 2007, resulting in strategic husbandry changes aimed at controlling MPV spread throughout the animal facility. To investigate these MPVs, VP2 genes of seven MPVs were cloned and sequenced from eight documented incidences by PCR technology. The mutations in these VP2 genes were compared to those found at the Genbank database (NCBI; http://www.ncbi.nlm.nih.gov) and an intra-institutional phylogenetic tree for MPV infections at U of L was constructed. We discovered that the seven MPV isolates were different from those in Genbank and were not identical to each other. These MPVs were designated MPV-UL1 to 7; none of them were minute virus of mice (MVMs). Four isolates could be classified as MPV1, one was classified as MPV2, and two were defined as novel types with less than 96% and 94% homology with existing MPV types. Considering that all seven isolates had mutations in their VP2 genes and no mutations were observed in VP2 genes of MPV during a four-month time period of incubation, we concluded that all seven MPVs isolated at U of L between 2006 and 2007 probably originated from different sources. Serological survey for MPV infections verified that each MPV outbreak was controlled without further contamination within the institution. Exp Mol Pathol 2013 Mar 29; 95(1):32-37

    Molecular diagnosis of a laboratory mouse papillomavirus (MusPV).

    No full text
    MusPV, a novel papillomavirus (PV) that naturally infects laboratory mice, was isolated and characterized from a colony of NMRI-Foxn1(nu)/Foxn1(nu) (nude) mice in India. Because MusPV may have been missed during routine pathogen screening of mice in colonies worldwide, a variety of detection methods are described to detect MusPV. The clinical and histologic lesions of productive MusPV infections fit PV-associated features, including papillomas, koilocytes within the stratum granulosum of the hyperplastic/acanthotic papillomatous epithelium, and the presence of intranuclear virus particles in koilocytotic cells visualized by electron microscopy. Antiserum against disrupted PV virions, isolated from another species (canine), identified conserved viral antigens in productively infected cells by immunohistochemistry. A rolling circle technique was used to amplify viral circular DNAs followed by endonuclease restriction enzyme digestion to determine the correct size of PV DNA. Consensus PV degenerative primers, My09/11, commonly used to detect many different types of PVs by polymerase chain reaction (PCR), particularly mucosotropic HPVs, also identified MusPV and all rodent PVs tested. Since there was one nucleotide mismatch between the My09/11 primer set and the MusPV template, a new primer set, MusPV-My09/11, was designed to specifically detect MusPV in latent infections and spontaneous MusPV-induced papillomas. Southern blot analysis verified the presence of full size PV DNA in infected tissues. Virus-like particles (VLPs), generated from MusPV L1 genes, provided a substrate for serological testing of naturally and experimentally infected mice. In summary, a series of diagnostic assays were developed and validated to detect MusPV infection in skin tumors and serological response in laboratory mice

    MmuPV1 infection and tumor development of T cell-deficient mice is prevented by passively transferred hyperimmune sera from normal congenic mice immunized with MmuPV1 virus-like particles (VLPs).

    No full text
    Infection by mouse papillomavirus (PV), MmuPV1, of T cell-deficient, B6.Cg-Foxn1(nu)/J nude mice revealed that four, distinct squamous papilloma phenotypes developed simultaneously after infection of experimental mice. Papillomas appeared on the muzzle, vagina, and tail at or about day 42days post-inoculation. The dorsal skin developed papillomas and hair follicle tumors (trichoblastomas) as early as 26days after infection. Passive transfer of hyperimmune sera from normal congenic mice immunized with MmuPV1 virus-like particles (VLPs) to T cell-deficient strains of mice prevented infection by virions of experimental mice. This study provides further evidence that T cell deficiency is critical for tumor formation by MmuPV1 infection. Exp Mol Pathol 2016 Feb; 100(1):212-21
    corecore